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Abstract

A general calculation method of calculating the spectrum of Lyapunov exponents is presented for n-dimensional

nonlinear non-smooth systems by using the Poincaré map method. The Poincaré map is constructed by means of local

maps to avoid calculating the Jacobian matrices at non-smooth points. The calculation of the spectrum of Lyapunov

exponents for impact-vibrating systems with rigid constraints is given in detail. This method can be generally applied to

systems with rigid or flexible (that is, perfectly elastic) constraints. In order to show the validity of this method, the

spectrums of Lyapunov exponents are calculated in a large range of parameters for two given dynamical systems with rigid

constraints and used to predict the dynamic behaviour.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In the investigation of nonlinear non-smooth impact-vibrating systems, the spectrum of Lyapunov
exponents is an important tool for determining the dynamic characteristics, which is an exponential measure
of average divergence or convergence of nearby orbits in the phase space. Many researches focussed on the
calculation methods of the spectrum of Lyapunov exponents [1–3].

There have been many results for calculating the spectrum of Lyapunov exponents of smooth dynamical
systems described by differential equations and discrete mapping systems [1,2]. Wolf et al. [3] presented the
first algorithms to estimate the non-negative Lyapunov exponents from an experimental time series. On the
other hand, for non-smooth systems (with discontinuities or piecewise smoothness), the calculation methods
of the spectrum of Lyapunov exponents has not been fully developed because the Jacobian matrices make no
sense at non-smooth points. Hence, the classical methods, which are based on the Oseledec theorem for
calculating Lyapunov exponents in smooth dynamical systems, cannot be applied to non-smooth systems
directly. In recent years, several methods for calculating the spectrum of Lyapunov exponents of specific
dynamical systems with discontinuities have been proposed. For example, Stefanski [4] and Stefanski and
Kapitaniak [5] estimated the largest Lyapunov exponent for mechanical systems with impact by using the
properties of synchronization phenomenon. Galvanetto [6] presented some numerical techniques to compute
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the Lyapunov exponents of some low-dimensional discontinuous maps implicitly defined in mechanical
stick–slip systems by means of the classical discrete map algorithm. Müller [7] supplemented certain
transitional conditions to the linearized equations at the instants of impacts and applied the classical
calculation methods of Lyapunov exponents to non-smooth systems. For an impact oscillator and an impact-
pair system, de Souza and Caldas [8] introduced the transcendental maps to describe the solutions of
integrable differential equations between impacts, supplemented by transitions at the instants of impact. At
the same time, the Jacobian matrix of the nth iteration of the transcendental map was converted into an upper
right triangular matrix to ensure the convergence and precision in the calculation process. Hence, the classical
calculation methods for the spectrum of Lyapunov exponents of smooth dynamical systems could be applied
to non-smooth systems in this case. All of the above methods for calculating the Lyapunov exponents can,
however, be applied only to some specific non-smooth systems or those supplemented by some transitional
conditions, so their usage is limited.

In this paper, a more general method for calculating the spectrum of Lyapunov exponents of n-dimensional
non-smooth dynamical systems is presented. The method is essentially based on local maps, which were first
proposed by Nordmark [9] to reveal singularities near the grazing orbits in an impact oscillator, and can be used
to construct the Poincaré map for the whole impact process to avoid problems with defining the Jacobian
matrices at non-smooth points. It should be mentioned that there were a few more works of such attempts in the
application of the local maps, for example [10]. The detailed procedures to construct the local maps for general
impact-vibrating systems with rigid or flexible (that is, perfectly elastic) constraints, as well as the calculation of
the spectrum of Lyapunov exponents, are demonstrated in Sections 2 and 3. The cases of Filippov (namely,
sliding) solutions [11] or chattering with infinitely many impacts in finite time [12,13] are not considered here,
however, and should be studied further. In order to show the validity of this method, the numerical simulations of
the spectrum of Lyapunov exponents in a large range of parameters are successfully carried out in Section 4 for
two given nonlinear dynamical systems with rigid constraints to predict their dynamic behaviour.

2. Calculation of the spectrum of Lyapunov exponents in impact-vibrating systems with rigid constraints

Consider the n-dimensional non-autonomous system

_x ¼ fðx; tÞ; x 2 Rn; t 2 Rþ, (1)

where f is a smooth vector field, which is periodic with respect to time t and nonlinear with respect to x. So,
system (1) can be written as a (n+1)-dimensional autonomous system as follows:

_x ¼ fðx;jÞ; ðx;jÞ 2 Rn � S1,

_j ¼ o, ð2Þ

where j is the phase angle and o is the angular frequency. Assume that the system has a rigid constraint.
Due to the existence of a rigid constraint, trajectories in the phase space are discontinuous at the instants of

impact. Therefore, the Jacobian matrices of the system do not exist at discontinuous points, and then the
method for calculating the spectrum of Lyapunov exponents of smooth dynamical systems cannot be applied
to non-smooth impact-vibrating systems directly. In this paper, local maps of non-smooth systems are
introduced in order to construct the Poincaré map first of all, and then the non-smooth impact-vibrating
systems (2) is transformed into a discrete dynamical system by the Poincaré map method. Hence, one can
calculate the spectrum of Lyapunov exponents of system (2) by using that of the discrete dynamical system. In
this general way, the direct calculation of the Jacobian matrices of system (2) at discontinuous points can be
avoided.

2.1. Construction of the Poincaré map by local maps

For the non-smooth impact-vibrating system (2) caused by rigid constraints, a constant phase supersurface
is taken as the Poincaré section defined by

Pjc ¼ fðx;jÞ 2 Rn � S1jj ¼ jcg ¼ Rn (3)
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and the Poincaré map is

P : Pjc ! Pjc . (4)

This map is composed of two sub-maps: one is the map of the impact process, and the other is the map of the
non-impact process.

In the impact process, the rigid constraint surface (that is, the impact surface) S is defined by

S ¼ fðx;jÞ 2 Rn � S1j hðx;jÞ ¼ 0g ¼ fðy;jÞ 2 Rn�1 � S1g, (5)

where y represents the point on S.
According to the assumption of rigid impact, the relation for the states before impact and after impact of

the system satisfies

yþ ¼ �½r�y�, (6)

where the subscripts �;þ denote the values before and after impact, respectively, and ½r� is the matrix of
restitution, which can be used to describe the impact conditions.

In the non-impact process, the flow Ft is smooth. Due to the nonlinearity of the vector field with respect to
the state variable x, however, it is difficult to obtain the analytical solution of the flow Ft. One way is to resort
to numerical methods (such as the Runge–Kutta method, etc.) to solve the following initial-value problem in
the region without impact

_x ¼ fðx;jÞ; ðx;jÞ 2 Rn � S1nS,

xðj0Þ ¼ x0, ð7Þ

where x0 is the initial condition.
In order to construct the Poincaré map P described by Eq. (4), suppose that a trajectory G of impact-

vibrating system (2) contacts the rigid constraint surface S at the point Oc with the phase j ¼ jc , and leaves S
at the point O0c with the same phase j ¼ jc since the impact is instantaneous from the rigid constraint
assumption. Fig. 1 shows the situation of the trajectory G crossing the Poincaré section Pjc in the state–space
Rn � S1.

Taking account of the fact that the impact process takes place on the constraint surface S with the
singularities of the flow Ft, we consider the local maps defined by the flow near the constraint surface. The
surface S is divided into two parts: the incidence part S� with the normal velocity vo0 (that is, moving toward
the surface) and the reflection part Sþ with the normal velocity v40 (that is, rebounding from the surface).
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According to the situation of the trajectory G intersecting with the rigid constraint surface S, three
kinds of local maps are defined: (I) a projection map PI from the constant phase section Pjc near the
point Oc to the constraint section S� ; (II) an impact map PII from the constraint section S� to the constraint
section Sþ; (III) a projection map PIII from the constraint section Sþ to the constant phase section Pjc near
the point O0c.

In general, these local maps are related to switches between different states in the impact process, so they are
the switch transforms of the state variables. Now consider the above three local maps with their Jacobian
matrices in detail.

(I) The map PI and its Jacobian matrix: Let z ¼ ðx;jÞT 2 Rn � S1; FðzÞ ¼ ðfðzÞ;oÞT be the vector field in the
state space Rn � S1, and let hðzÞ ¼ 0 be the equation of the rigid constraint surface S (that is, the switch
surface). Define an (n+1)-dimensional switch map PL : Pjc ! S�; z 7!PLðzÞ near the point Oc, given by the
flow Ft of system (2). Using the geometrical relationship between the trajectory and the switch surface under
the transversality condition, one can deduce a general formula for calculating the Jacobian matrix of PL at the
point Oc as follows [10]:

DPLðzcÞ ¼ I�
FðzcÞDhðzcÞ

DhðzcÞ � FðzcÞ
, (8)

where the point Oc corresponds to zc ¼ ðxjc�
;jcÞ, I is the (n+1)-dimensional identical matrix, FðzcÞDhðzcÞ is a

second-order tensor, and DhðzcÞ � FðzcÞ is a scalar product of vectors.
The n-dimensional local map

PI : Pjc ! S�; xjc�
7!ðy�;jcÞ (9)

is just the restriction of the switch map PL on the constraint section S�. Therefore, by reserving the
rows corresponding to the coordinates ðy�;jcÞ of the constraint section S� and the columns correspon-
ding to the coordinates xjc�

of the constant phase section Pjc in the Jacobian matrix DPL at the
point Ocðxjc�

;jcÞ given by Eq. (8), the Jacobian matrix DPI of the local map PI can be expressed in an
analytical way.

(II) The map PII and its Jacobian matrix: The n-dimensional local map

PII : S� ! Sþ; ðy�;jcÞ7!ðyþ;jcÞ (10)

can be given by the impact relation (6) and the instantaneous property, and its Jacobian matrix is

DPII ¼
�r 0

0 1

� �
(11)

(III) The map PIII and its Jacobian matrix: The n-dimensional local map

PIII : Sþ ! Pjc ; ðyþ;jcÞ7!xjcþ
(12)

can be discussed as (I) by another similar switch map P0L. The Jacobian matrix DPIII can be calculated by
reserving the rows corresponding to the coordinates xjcþ

of the constant phase section Pjc and the columns
corresponding to the coordinates ðyþ;jcÞ of the constraint section Sþ in the Jacobian matrix DP0L at the point
O0cðxjcþ

;jcÞ.
Now, one defines a compound map Pc to describe the impact process, constituted by the above three kinds

of maps as

Pc ¼ PIII � PII � PI (13)

with the Jacobian matrix

DPc ¼ DPIII �DPII �DPI . (14)

In the non-impact process, no trajectory goes through the constraint section S. In succession, one
defines a n-dimensional map PIV from the constant phase section Pjc returning to Pjc directly without
impact, that is,

PIV : Pjc ! Pjc ; xjcþ
7!xjc�

, (15)
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which is a smooth map (homeomorphism). Its Jacobian matrix DPIV can be obtained by the differentiation
rule of multivariate functions

DPIV ¼
qx

qxjcþ

�����
j¼jc�

. (16)

Because system (2) is nonlinear with respect to x, it is difficult to obtain the analytical solution. The numerical
solution of the Jacobian matrix DPIV at j ¼ jc� can, however, be obtained by solving the following initial-
value problem

d

dt

qx
qxjcþ

" #
¼

qf
qx

qx
qxjcþ

qx
qxjcþ

�����
j¼jcþ

¼ I,

qx
qxjcþ

�����
j¼jcþ

¼ I ð17Þ

together with the initial-value problem (7) simultaneously.
The Poincaré map P defined by Eq. (4) can be expressed by a composition of the above maps

P ¼ PIV � PIII � PII � PI ¼ PIV � Pc (18)

with the Jacobian matrix

DP ¼ DPIV �DPIII �DPII �DPI ¼ DPIV �DPc. (19)

2.2. Mathematical description of the spectrum of Lyapunov exponents of impact-vibrating systems with rigid

constraints

As shown before, the Poincaré map method is adopted by means of the Poincaré map P described in Eq. (4):

xðkÞ ¼ Pðxðk�1ÞÞ; xðk�1Þ;xðkÞ 2 Pjc ; k 2 Z. (20)

On the constant phase section Pjc , one chooses two nearby points xð0Þ and xð0Þ þ dxð0Þ, from which originate
the nearby orbits G1 and G2 of the discrete dynamical system (20). When dxðk�1Þ is sufficiently small, the
linearized equation of system (20) at the point xð0Þ is given as follows:

dxðkÞ ¼ DPðxðk�1ÞÞ � dxðk�1Þ, (21)

where DPðxðk�1ÞÞ is the Jacobian matrix of Eq. (20) at the point xðk�1Þ.
According to formulae (20) and (21), one obtains

dxðkÞ ¼ DPkðxð0ÞÞ � dxð0Þ, (22)

where

DPkðxð0ÞÞ ¼ DPðxðk�1ÞÞ �DPðxðk�2ÞÞ � � �DPðxð0ÞÞ (23)

then the spectrum of Lyapunov exponents of the discrete dynamical systems (20) is defined as [2]

li ¼ lim
k!1

1

k
ln jm

ðkÞ
i j ði ¼ 1; 2; . . . ; nÞ, (24)

where m
ðkÞ
i ði ¼ 1; 2; . . . ; nÞ are the ith eigenvalues of the Jacobian matrix DPkðxð0ÞÞ of the n-dimensional

Poincaré map P at the point xð0Þ.
In calculating the spectrum of Lyapunov exponents directly according to (24), one needs firstly the

Jacobian matrix DPkðxð0ÞÞ of the Poincaré map P. In the iterative process of calculating DPkðxð0ÞÞ,
however, morbid problems may be encountered in which some elements of DPkðxð0ÞÞ become either
very large for chaotic attractors or null for periodic attractors. This makes the numerical computation results
unreliable.
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To prevent this computation problem, formula (24) cannot be used directly. In this paper, we compute the
average exponent divergence rate between the basis orbit beginning at the point xð0Þ and its nearby orbit along
the direction of uð0Þ ¼ dxð0Þ=kdxð0Þk by the following formula:

lðxð0Þ; uð0ÞÞ ¼ lim
k!1

1

k
ln
kdxðkÞk
kdxð0Þk

, (25)

where kdxðkÞk is the norm of dxðkÞ ðk ¼ 0; 1; . . .Þ. If choosing n linearly independent vectors ei : ði ¼ 1; 2; . . . ; nÞ,
for example, the eigenvectors of the matrix DPðxð0ÞÞ as the iterative initial values uð0Þ, one can obtain n values
of liðx

ð0Þ; eiÞ ði ¼ 1; 2; . . . ; nÞ by Eq. (25) ranked from small to large as

l1Xl2X � � �Xln (26)

which are named the spectrum of Lyapunov exponents of the discrete dynamical system (20) and the non-
smooth impact-vibrating system (1) with rigid constraint as well.

2.3. Calculation of the spectrum of Lyapunov exponents of impact-vibrating systems with rigid constraints

Choose xð0Þ 2 Pjc and n linearly independent initial perturbations ðdxð0Þ1 ; dx
ð0Þ
2 ; . . . ; dx

ð0Þ
n Þ, such as the

eigenvectors of DPðxð0ÞÞ. According to the non-smooth characteristics of the nonlinear dynamical system with
rigid constraint and introducing the local maps, one can obtain the Jacobian matrix DP of the Poincaré map
P by Eq. (19). Then, one iterates the linearization equation (21). For the kth iteration, the difference between
two nearby orbits is ðdxðkÞ1 ; dx

ðkÞ
2 ; . . . ; dx

ðkÞ
n Þ. This iteration process is given as follows. Considering the existence

of rigid constraint in this system, the iterations are made from a constant phase section Pjc just before the
impact, and ðu

ð0Þ
1 ; u

ð0Þ
2 ; . . . ; u

ð0Þ
n Þ ¼ ðdx

ð0Þ
1 =kdx

ð0Þ
1 k; dx

ð0Þ
2 =kdx

ð0Þ
2 k; . . . ; dx

ð0Þ
n =kdx

ð0Þ
n kÞ is defined. Then, taking

ðu
ð0Þ
1 ; u

ð0Þ
2 ; . . . ; u

ð0Þ
n Þ as the initial vector and introducing the local maps, ðu

ð0Þ
1 ; u

ð0Þ
2 ; . . . ; u

ð0Þ
n Þ is mapped onto

the same constant phase section Pjc by the Jacobian matrices DPc given by Eq. (14) just after the impact.
Then, this point is mapped onto the constant phase section Pjc again by the Jacobian matrix DPIV given
by Eq. (16) to obtain the n-dimensional vectors ðdxð1Þ1 ; dx

ð1Þ
2 ; . . . ; dx

ð1Þ
n Þ, where dxð1Þi ¼ dxð1; uð0Þi ;x

ð0ÞÞ ¼

DPðxð0ÞÞu
ð0Þ
i ; ði ¼ 1; 2; . . . ; nÞ. Using the Gram–Schmidt ortho-normalization for the vectors ðdxð1Þ1 ;

dxð1Þ2 ; . . . ; dx
ð1Þ
n Þ, gives the vectors ðu

ð1Þ
1 ; u

ð1Þ
2 ; . . . ; u

ð1Þ
n Þ used as the initial value of the next iteration.

The next iteration proceeds in the same way. In general, the n-dimensional vectors ðdxðkÞ1 ; dx
ðkÞ
2 ; . . . ; dx

ðkÞ
n Þ

are obtained after the kth iteration. The result of Gram–Schmidt ortho-normalization can be described as
follows:

v
ðkÞ
1 ¼ dxðkÞ1
u
ðkÞ
1 ¼ v

ðkÞ
1 =kv

ðkÞ
1 k

v
ðkÞ
2 ¼ dxðkÞ2 � hdx

ðkÞ
2 ; u

ðkÞ
1 iu

ðkÞ
1

u
ðkÞ
2 ¼ v

ðkÞ
2 =kv

ðkÞ
2 k

..

.

vðkÞn ¼ dxðkÞn � hdx
ðkÞ
n ; uðkÞ1 iu

ðkÞ
1 � � � � � hdx

ðkÞ
n ; uðkÞn�1iu

ðkÞ
n�1

uðkÞn ¼ vðkÞn =kvðkÞn k, ð27Þ

where kv
ðkÞ
i k ði ¼ 1; 2; . . . ; nÞ is the norm of v

ðkÞ
i ; hdxðkÞj ; uðkÞj i ði; j ¼ 1; 2; . . . ; nÞ is the standard scalar

product.
The vectors ðu

ðkÞ
1 ; u

ðkÞ
2 ; . . . ; u

ðkÞ
n Þ are normalized and orthogonal to each other, and the subspace spanned by

ðu
ðkÞ
1 ; u

ðkÞ
2 ; . . . ; u

ðkÞ
n Þ is the same as that spanned by ðdxð0Þ1 ; dx

ð0Þ
2 ; . . . ; dx

ð0Þ
n Þ; ðu

ðkÞ
1 ; u

ðkÞ
2 ; . . . ; u

ðkÞ
n Þ can be chosen as the

initial value of the (k+1)th iteration. A general relation can be deduced as follows:

dxðkÞi ¼ dxðk; dxð0Þi ; x
ð0ÞÞ ¼ kv

ðkÞ
i kkv

ðk�1Þ
i k � � � kv

ð1Þ
i ku

ðkÞ
i ði ¼ 1; 2; . . . ; nÞ. (28)
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Applying formula (25), one can approximately obtain the spectrum of Lyapunov exponents of nonlinear
dynamical systems with rigid constraint for K sufficiently large as

li �
1

K
ln kdxðK ; dxð0Þ; xð0ÞÞk

¼
1

K
ln
YK
k¼1

kv
ðkÞ
i k

¼
1

K

XK

k¼1

ln kv
ðkÞ
i k ði ¼ 1; 2; . . . ; nÞ. ð29Þ

3. Calculation of the spectrum of Lyapunov exponents in impact-vibrating systems with flexible constraints

If the vector field of system (2) has a flexible (that is, perfectly elastic) constraint, which is nonlinear with
respect to x, and assuming that there is no damping, sliding or Filippov solution [11] taking place, then the
flow is continuous but piecewise smooth between the impact and non-impact processes. Therefore, the
Jacobian matrices do not exist at the impact points in this case, and the method for calculating the spectrum of
Lyapunov exponents of smooth dynamical systems cannot be applied directly.

To avoid calculating the Jacobian matrices of vector fields at the impact points, the Poincaré map method is
still used to transform the piecewise smooth dynamical system (2) into a discrete dynamical system. At the same
time, one considers that the coordinates of the constant phase section Pjc can be used as the state variables both
in the impact and the non-impact processes. Hence, one can take the constant phase sectionPjc before impact as
the Poincaré section, and define the Poincaré map P by Eq. (4). It is obvious that the local map Pc is just the
identity map I in this case. The flow of system (2) is continuous now, and its Poincaré map P can be decomposed
of two continuous flow maps in the impact and non-impact processes, respectively, as follows:

P ¼ Pnon � Pflex, (30)

where Pnon is defined as the continuous flow map in the non-impact process, and Pflex is defined as another
continuous flow map in the process of contacting flexible constraints. The Jacobian matrix DP can be expressed as

DP ¼ DPnon �DPflex, (31)

where the Jacobian matrices DPnon and DPflex can be calculated similarly by Eq. (16). Then the spectrum of
Lyapunov exponents of nonlinear dynamical systems with flexible (perfectly elastic) constraints can be obtained by
Eq. (29).

It should be noted that if system (2) has damping, sliding or Filippov solution, the method for calculating the
spectrum of Lyapunov exponents of system (2) is much more complex and will be the subject of future work.

4. Examples

4.1. Impact oscillator

An impact-vibrating system, as shown in Fig. 2, is composed of an oscillator attached to a linear spring and
a rigid constraint. When the displacement x reaches a fixed value xc, an impact will occur between the
oscillator and the rigid constraint. The system is excited by an external periodic force, and the dimensionless
equation of motion is

€xþ x ¼ b cosot ðxoxcÞ, (32)

which can be written as the following dynamical system:

_x

_v

_j

2
64

3
75 ¼

v

�xþ b cosj

o

2
64

3
75 ðxoxcÞ, (33)

where b; o are the amplitude and the frequency of the external force, respectively.
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According to the rigid impact assumption, the relation between the states before and after impact
at x ¼ xc is

v

j

" #
þ

¼
�r 0

0 1

� �
v

j

" #
�

, (34)

where the subscripts �;þ denote the states before and after impact, respectively; r is the restitution coefficient.
Applying the Poincaré map method, one takes the constant phase section Pjc before impact as the Poincaré

section. The Jacobian matrix DP of the Poincaré map P of this impact vibration system can be given by Eq.
(19), that is,

DP ¼ DPIV �DPc, (35)

where the analytical expression of the Jacobian matrix DPc of the compound map Pc is

DPc ¼ DPIII �DPII �DPI

¼

0 �
vþ

o

1
xþ � b cosjþ

o

2
664

3
775 � �r 0

0 1

" #
�

x� � b cosj�
v�

1

�
o
v�

0

2
6664

3
7775

¼

�r 0

ð1þ rÞð�x� þ b cosj�Þ
v�

�r

2
64

3
75. ð36Þ

The numerical solution of the Jacobian matrix DPIV of the map PIV follows by integrating Eqs. (17) and (33)
numerically. Then the semi-analytical solution of the Jacobian matrix DP is obtained by Eq. (35). By means of
the Jacobian matrix DP, one iterates the linearized equation given by Eq. (21). When the iteration time is
sufficiently large, the spectrum of Lyapunov exponents of Eq. (33) is obtained by Eq. (29).

When the parameters have the values xc ¼ 0; b ¼ 1:0; r ¼ 0:8; o ¼ 3:52, the phase portrait of a single-
impact period-1 attractor is shown in Fig. 3(a), and the test of the convergence of the iteration sequences of the
spectrum of Lyapunov exponents is shown in Fig. 3(b). It is seen from Fig. 3(b) that there are two negative
Lyapunov exponents. Their values are so close, however, that they cannot be distinguished clearly in this
figure. This attractor is a periodic attractor. For this iteration sequences, 25,000 iterations were taken of which
the first 2000 iterations are omitted as the transient process. The convergence of this iteration process with
good precision is shown in Fig. 3(b).

When the parameters have the values xc ¼ 0; b ¼ 1:0; r ¼ 0:8; o ¼ 4:85, the phase portrait of a chaotic
attractor is shown in Fig. 4(a), and the test of the convergence of the iteration sequences of the spectrum of
Lyapunov exponents is shown in Fig. 4(b). From Fig. 4(b), it can be seen that there exists a positive Lyapunov
exponent, so this attractor is a chaotic attractor.

For further validating the correctness in the iteration process of the general method for calculating
the spectrum of Lyapunov exponents in this paper, the bifurcation diagram of system (33) for the
bifurcation parameter o changing from 2.5 to 5.5 and the corresponding Lyapunov exponents diagram
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are given in Figs. 5(a) and (b), respectively. In these figures, the increment of parameter o is taken
as 0.002 generally; it is reduced to about 0.0001, however, near the bifurcation point for higher
accuracy. Comparing with Figs. 5(a) and (b), one can see that the regions where all Lyapunov
exponents are negative correspond to periodic attractors, and that with at least one positive
Lyapunov exponent correspond to chaotic attractors. And the same time, when the periodic solutions
encounter bifurcations, the largest Lyapunov exponent is equal to zero from Fig. 5(b), for example,
o ¼ 2:6534; 2:968; 3:140; 3:338; 3:474; 4:642; 5:344; 5:480, etc.

Ref. [8] presented the bifurcation diagram of system (33) with the bifurcation parameter o varying in a wide
range from 2.0 to 5.0 and the corresponding Lyapunov exponents diagram by introducing a transcendental
map. The method in Ref. [8] has its own limitation and then can only be applied to some special non-smooth
systems. Moreover, the chaotic attractors appearing in the region of o ¼ 3:46–3.464 were not reflected in its
bifurcation diagram in Ref. [8], and the corresponding largest Lyapunov exponent in Ref. [8] was less than
zero in its Lyapunov exponents diagram, which may be a result of the increment in the bifurcation parameter
o being too large. Therefore, when comparing with the method in Ref. [8], the method for calculating the
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spectrum of Lyapunov exponents of non-smooth nonlinear dynamical systems given in this paper, not only
can be used in a general extent of non-smooth dynamical systems, but also keeps high precision and
convenience in computation.

4.2. An impact single pendulum

An impact-vibrating system, as shown in Fig. 6, is composed of a single pendulum OA in the perpendicular
plane, with a mass m at the tip A, and a rigid constraint surface. A revolving flexible spring and a linear
damper are set at the point O, and the pendulum is forced by a periodic external moment. Let the
dimensionless angle between the pendulum and plumb line be x. Impacts occur between the pendulum and the
rigid constraint when the dimensionless horizontal displacement between the pendulum tip A and the hanging
point O reaches D. The dimensionless motion equation is

€xþ 2d _x� xþ x3 þ g1 sin x ¼ b cosot; ðsin xoDÞ (37)
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which can be written as

_x

_v

_j

2
64

3
75 ¼

v

�2dvþ ðx� x3Þ � g1 sin xþ b cosj

o

2
64

3
75; ðsin xoDÞ, (38)

where b is the forcing amplitude, o is the forcing frequency, d is the linear damping coefficient, and g1 is the
dimensionless gravitation acceleration.

An impact occurs when sin x ¼ D under the relation

v

j

" #
þ

¼
�r 0

0 1

� �
v

j

" #
�

. (39)

Applying the Poincaré map method, the Jacobian matrix DP of the Poincaré map P of the impact-vibrating
system is given by Eq. (19) as

DP ¼ DPIV �DPc, (40)
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Fig. 5. (a) The bifurcation diagram of system (32) with respect to the parameter o and (b) variation of the Lyapunov exponents with

respect to the parameter o.

Fig. 6. An impact-vibrating system with a pendulum and a rigid constraint.
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where

DPc ¼ DPIII �DPII �DPI ,

¼

0 �
vþ

o

1
2dvþ � ðxþ � x3

þÞ þ g1 sin xþ � b cosjþ
o

2
66664

3
77775 �
�r 0

0 1

" #

�

2dvþ � ðxþ � x3
þÞ þ g1 sin xþ � b cosjþ

o
1

�
o
v�

0

2
6664

3
7775,

¼
�r 0

a21 �r

" #
ð41Þ

and a21 ¼ ð1þ rÞðx� � x3
� � g1 sin x� þ b cosj�Þ=v�
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Fig. 7. (a) The phase portrait of a four-impact period-4 attractor and (b) convergent sequence in the iteration process of the spectrum of

Lyapunov exponents of the periodic attractor.
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Integrating Eqs. (17) and (38) yields the Jacobian matrix DPIV numerically. Then the semi-analytical
solution of the Jacobian matrix DP of map P can be obtained by Eq. (40), and the spectrum of Lyapunov
exponents of system (38) by formula (29).

With the parameters values D ¼ 0; d ¼ 1:0; g1 ¼ 1:0; o ¼ 1:1; r ¼ 0:8; b ¼ 1:91, the phase portrait
of a four-impact period-4 attractor is shown in Fig. 7(a). There are two negative Lyapunov exponents in
Fig. 7(b), so that this attractor is a periodic attractor. The convergence of iteration with good precision is
shown in Fig. 7(b).

When the parameters D ¼ 0; d ¼ 1:0; g1 ¼ 1:0; o ¼ 1:1; r ¼ 0:8; b ¼ 3:5, the phase portrait of a chaotic
attractor is shown in Fig. 8(a). There is one positive Lyapunov exponent in Fig. 8(b), so this attractor is a
chaotic attractor.

The bifurcation diagram of system (38) for the bifurcation parameter b from 1.0 to 4.0 is given in Fig. 9(a),
and the corresponding Lyapunov exponents diagram is given in Fig. 9(b). It is seen that all Lyapunov
exponents are negative for periodic attractors and there is one positive Lyapunov exponents for chaotic
attractors.
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At the same time, when the bifurcations of periodic solutions occur, their largest Lyapunov exponents
are equal to zero in Fig. 9(b), that is, at b ¼ 1:13061, 1.818, 2.182, 2.48447, 2.612, 3.198, 3.302, 3.700, 3.804,
3.912, etc.

5. Conclusion

Through analysing nonlinear, non-smooth, impact-vibrating systems, a general calculation method of the
spectrum of Lyapunov exponents has been presented in this paper by using the Poincaré map method. The
local maps in the impact process were introduced in order to avoid the difficulties in the calculation of
the Jacobian matrix of the Poincaré map which does not exist at the non-smooth points. This method can be
applied generally to n-dimensional non-smooth impact-vibrating systems with rigid constraints or flexible
(that is, perfectly elastic) constraints. As examples, the corresponding spectrum of Lyapunov exponents are
given for two given nonlinear, impact-vibrating systems with rigid constraints. In order to show the validity of
the above universal method, the spectra of Lyapunov exponents in a large range of parameters were calculated
for these systems, and the results compared with the bifurcation diagrams obtained by the Poincaré map
method in the corresponding parameter range.
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